
Exercise for week 5: Light force on a bubble 07.10.2024

Imagine a spherical soap bubble in the air. In the usual case, it falls due to gravity. Is it possible to prevent it from falling by illuminating it with a 1-Watt laser beam at $\lambda = 532 \, nm$, polarized horizontally, if the bubble is filled with smoke that totally absorbs the laser beam inside the bubble?

Consider the thickness of the bubble wall uniform and equal to $\delta = 500$ nm. The density of the bubble layer $\rho_{\text{layer}} = 1000^{\text{kg}}/_{\text{m}^3}$, and the density of the air and the smoke $\rho_{\text{air or smoke}} = 1.28^{\text{kg}}/_{\text{m}^3}$. The radius of the bubble R = 2.5 cm, the laser beam is parallel to the x-axis and the photons hit the bubble at $\alpha = -45^{\circ}$ below the x-axis (see the figure). Consider that 5 % of the laser beam is reflected at each air-bubble interfaces.

